martes, 7 de junio de 2016

“ Sol atrapado”


Sol atrapado”
Realizado por el Prof. Carlos M. Ávalos

Gif animado elaborado con Geogebra
Dodecaedro en 3D realizado con Geogebra

Materiales e instrumentos 
utilizados

Pajitas de plástico, hilo, aguja, pinza, vela, mechero, dedal.
Tiempo empleado en su construcción alrededor de 5 horas.

Procedimiento

  • Se cortan todas las pajitas a la misma longitud, en mi caso fueron a 15 cm de largo.
  • Se calientan los extremos de cada pajita con una pinza al calor de una vela y se cierran con una pinza (hay que tener cuidado que el proceso es muy rápido).
  • Se unen en cada vértice 6 pajitas, 3 rosas y tres amarillas, cosiéndolas con una aguja e hilo (ver vídeo). El hilo debe ser preferiblemente de poliéster y de buena calidad.
  • Se recomiendan utilizar dos colores para facilitar la construcción.
  • Es un proceso repetitivo que requiere paciencia, es preferible hacerlo en varios días para no entrar en desesperación.

Descripción

Uno de los cinco sólidos platónicos, denominado dodecaedro (12 caras, de color rosa) en cuyo interior se construye una estructura para darle rigidez conformada por 12 pirámides de base pentagonal (color amarillo), las cuales miran hacia adentro. Es un poliedro convexo y responde al teorema de Euler:
C+V=A+2
12+20=30+2

  • Aristas rosas (formando el dodecaedro) 30
  • Aristas (amarillas conformando la estrella) 90
  • Cada arista ha sido calentada en ambos extremos (180) para termo sellarlas con ayuda de una vela y una pinza.
  • Presenta un total de 32 vértices, 20 externos (3 pajitas rosas y tres amarillas) y 12 internos (4 pajitas amarillas).
  • Presenta 12 pirámides pentagonales.
  • Cada cara del poliedro regular son pentágonos.

Vista superior desarrollado con Geogebra

Un poliedro es convexo si el sólido queda por completo de un mismo lado de un plano que contiene a una cara cualquiera. (Geometría superior), de Bruño.

Retos matemáticos (geometría, pura y dura).

  1. ¿Podrías calcular el apotema del pentágono, si conoces que el lado es 15 cm?
  2. ¿Podrías calcular el área de un pentágono? 
  3. Calcula la superficie y el volumen del dodecaedro.
  4. Calcula el volumen de cada pirámide de base pentagonal de la figura.
  5. Calcula el volumen de todos 
  6. ¿Podrías decirnos el volumen de la estrella interna? 
  7. ¿Te atreves a calcularlo?



Datos y resultados de los cálculos
  • Longitud de cualquier arista: 15 cm
  • Altura del sólido (dodecaedro): 33,41cm
  • Altura del pentágono: 23,08 cm
  • Apotema del pentágono: 10.32 cm 
  • Área de cada cara (pentágono): 387,11 cm²
  • Área total del sólido (dodecaedro): 4 645,32 cm²
  • Volumen del sólido (dodecaedro): 25 863,03 cm³


Cómo construir el dodecaedro, mirar aquí  (vídeo en youtube)


El reto a un estudiante

 En estos días le dije a un alumno.
- ¿quieres ganarte un punto?

- ¡Si!

- ¿Podrías calcular el área  de uno de sus pentágonos sabiendo que sus  lados son de 15 cm de longitud, podrías calcular su área.
 Pasó hacer una tarea no solo de ella, sino de varios chicos de la clase de ampliación de matemáticas.

- Todos me dijeron de forma tajante, "no se puede hacer. Usted tampoco lo sabe."

- Le dije si se puede hacer, piensa en ello, te doy hasta mañana.

- Le preguntaron a compañeros, familiares. Al día siguiente la consigo en pleno recreo y me dijo: es imposible faltan datos.

- Le dije descompone el pentágono en triángulos y usa la trigonometría.

- No se hacerlo, me ha dado una pregunta trampa.

Lo que pretendía es que hiciese algo de transferencia de lo que aprende en matemáticas en algo real. La transferencia fue imposible, hasta se molestó.
La respuesta estaba en la trigonometría, rama de la matemática que permite conocer longitudes inaccesibles si disponemos de ańgulos en triángulos.

Cálculo por trigonometría del apotema a partir del lado
del pentágono base del dodecaedro.


Dodecaedro realizado por Carlos Ávalos. Madrid. Basado en las ideas de Paulo Sutil.



Bibliografía:
  • Paulo Sutil. (2015). O Dodecaedro Regular. (Página web en linea). Disponible: https://www.youtube.com/watch?v=gYfRX-t_ngk. (Consulta: 2016, Junio 5). 
  • Rafael Pérez Laserna. Canal de Youtube (página web en línea). Disponible en: https://www.youtube.com/channel/UCNQLSM4eqaFmHROtAQWSF5g (Consulta: 2016,Junio 11).

No hay comentarios:

Publicar un comentario